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An adaptive multigrid approach for the solution of
the 2D semiconductor equations

P.W. Hemker and J. Molenaar

Abstract

An adaptive multigrid method is presented for the solution of the two-dimensional
steady state Van Roosbroeck equations for semiconductor device modeling. The dis-
cretisation is based on the (hybrid) mixed finite element method on rectangles. The
integrals involved are approximated by the trapezoidal rule. In this way, in the interior
of the domain, the classical Scharfetter Gummel discretisation is retained. A 5-point
collective Vanka-type relaxation procedure is used as a smoother.

The mixed finite elements give rise to a cell-centered multigrid method and the
multigrid grid-transfer operators are chosen in agreement with the discretisation. The
main difficulties are the proper use of very coarse grids and the construction of suitable
initial estimates. In order to admit very coarse grids, it appears necessary to take special
measures and to introduce local damping of the residual in the coarse grid correction.

It is shown that, under these conditions, a fast convergence can be obtained that
seems to be independent of the grid size. Hence, in combination with nested iteration,
an efficient procedure is obtained. Results are shown for a realistic two-dimensional
transistor model.

1 Introduction

The usual mathematical model to describe the electric behaviour of semiconductor devices is
the drift diffusion model, that was essentially proposed by Van Roosbroeck [18] in 1950. It is
given by a nonlinear system of three second order partial differential equations. Let  C IR™,
n=1,2,3, be an open bounded region with a piecewise smooth boundary 9, then, scaled to
dimensionless form, the equations are [11] [15]

div (\’grad ¥)=n — p — D,
9 — div (pn(grad n — ngrad ¢ — ngrad logn;)) — R, (1)

¢
% = div (pp(grad p+ pgrad ¥ — pgrad logn;)) — R.

Here the dependent variables n and p, denote the local density of free electrons and holes in
the device respectively, and ¥ is the electrostatic potential. These variables are functions of
e and ¢t > 0; A% is associated with the dielectric constant; D(x), the net doping function,
describes the location of the impurities that characterises the device. Also n;, the effective
intrinsic carrier density, is a function of z; p, and g, the carrier mobilities are functions
of z, n, p, grad ¥, and the net recombination rate R, that models the recombination and
generation of electrons and holes, is a function of n and p. The first equation in (1) is the
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Poisson equation for the electric field, whereas the second and the third are the continuity
equations for the electrons and holes.

The usual approach for the numerical solution of (1) is the application of a box method
(finite volume method) for the discretisation, where the Scharfetter-Gummel exponential fit-
ting scheme is used for the approximation of the fluxes between the control volumes. Damped
Newton methods are generally used for the solution of the discrete nonlinear systems. For
details about the equations and the techniques for their numerical solution, we refer to [11]
and [15]. In this paper we investigate a nonlinear multigrid technique for the solution of eq.(1)
in order to see whether it could be advantageously applied.

In order to reduce the large number of technical difficulties involved, we restrict ourselves
to the computation of the steady state, and we assume the intrinsic carrier density n; and the
mobilities x, and g, to be constant. With these simplifications, still many of the essential
difficulties remain. In the first place the equations are singularly perturbed because the
parameter ), that can be related with the Debye length of the device, is generally small
compared with the size of the device. Moreover, a strong convective behaviour of the equations
is caused by the possibly large coefficient grad % in the continuity equations.

In the past, several attempts have already been made to explore the possibilities of multi-
grid techniques for the solution of the equations (1). However, up to now the question of
whether the multigrid technique is feasible for practical application for these equations is still
open. It appears that the use of multigrid is not straightforward at all and that a number of
difficulties are encountered with its application. In this paper we want to show some progress
made towards an applicable MG method for semiconductor device modeling.

Adaptive grids and nested meshes

In this paper we apply the nonlinear multigrid approach to the solution of the discretised
equation (1). The difficulties lie in the bad scaling, the strong nonlinearity and the singular
perturbation character. Because of the singular perturbation behaviour, sharp shifts will
appear in the solution, whereas in other regions the variables vary only gradually. This makes
it unfeasible to represent the solution on a regular mesh. A priori some physical insight may
be available about the location of the various regions, but the true solution is only known
after numerical approximation. Therefore automatic adaptive local mesh refinements are
introduced. This is done in a more or less straightforward sense, as basicly treated e.g in
Brandt [2] or McCormick [12]. One difference is that the method is now applied in its cell-
centered form. The solution is represented by its values at cell centers and cells are divided into
smaller cells to obtain finer meshes. This approach is advantageous in the case conservation
laws play a role and it has direct consequences for the transfer operators used.

The adaptive algorithm is flexible in the sense that it allows a completely arbitrary re-
finement of already existing cells. This is done by allowing any rectangular cell to be divided
into four smaller rectangles of the same shape. The smaller cells are part of the next level of
refinement in the sequence of discretisations used for the multigrid method. In this way all
cells belong to a quad-tree structure and each cell has at most four neighbours on the same
refinement level. The same quad-tree structure is used in the program to store the data. The
domain of definition for the equations needs to be covered only by the very coarsest grid.
Finer grids may cover the domain only partially. This freedom allows another (independent)
algorithm to take full responsibility of the grid refinement procedure.
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Multigrid

In the first place multigrid can be used for nested iterations, i.e. to obtain initial estimates for
the solution on a coarser grid than the one that is required to give an accurate representation
‘of the solution. The usual way of solving the equation for a set of boundary conditions,
is by starting at a zero bias and incrementing the boundary values in small steps until the
desired conditions are reached. Such a continuation process requires a number of intermediate
calculations that are best made on a grid that is as coarse as possible. As soon as the problem
has been approximately solved on the coarse mesh, the mesh can be refined to yield higher
accuracy.

The iteration process to solve the problem on each level might be an approximate Newton
method where multigrid is used to solve the linear systems. For this approach see e.g. [1].
A drawback of global linearisation is the time-consuming evaluation of Jacobian entries and
the large memory requirements to store them. This can be avoided by the use of nonlinear
multigrid where linearisations are made only locally. We are interested in such nonlinear
multigrid techniques for the solution of the large nonlinear systems.

Because of the strong local variations in the solution, one difficulty to deal with is to
know what information, available from a very coarse grid solution, may still be useful for
the acceleration of the convergence on the fine grid. Such problems were also known from
CFD problems with shocks, where -for the Euler equations- these difficulties could be solved
by strict adherence to the discrete conservation laws. For the semiconductor equations this
problem appears to be much harder because source terms, that are related to approximate
truncation errors, may be so large that -without special measures- no longer a (positive)
solution for the coarse grid problem can be guaranteed.

2 The equations

After the simplifications, mentioned in Section 1, the equations to be solved are

divJy, —n+p+D =0, J, =\grad ¢,
divJ, — R =0, Jn = +pn(grad n — ngrad 9), (2)
divJ, + R = 0, Jp = —pp(grad p + pgrad ).

In shorthand we write these equations also as N(3,n,p) = 0. For the recombination rate we
assume the Shockley-Read-Hall model

_ np — 1

B Tp(n + 1)+ m(p +1)

: (3)
In order to bring the variables to quantities of the same dimension, it is useful to introduce

the quasi-Fermi potentials ¢, and ¢, by

n = exp(¥ — én), (4)
P= exp(d’p - l/))

As a starting point for the discretisation, we use the Slotboom variables

®, = exp(—%n), (5)
®, = exp(+¢p),
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for which the equations appear in symmetric positive definite form:

—div (gygrad ) + @ = D,
—div (g, exp(+¢)grad &,) + R =0, (6)
—div (ppexp(—v)grad $,) + R =0,

where we use the notation gy = A2, Q = e¥®, — e"¥®,. The boundary conditions are of
Dirichlet type (¢, ¢, #, given) at the Ohmic contacts, and homogeneous Neumann conditions
(Jy = J, = Jp, = 0) at the remaining parts of the boundary.

3 The discretisation by Mixed Finite Elements

Each of the equations (6) can be cast in the form

g = agrad u

dive = f(u) } on &, 7
U = g on FD, ( )
n-oc = 0 on [y,

where I'p and 'y denote the parts of the boundary with Dirichlet or homogeneous Neumann
boundary conditions, respectively. The sign is chosen such that a(z) > 0. As a starting point
for the discretisation we use its variational form: find c€ HB¢(div , Q) and u€ L*(Q2) such that

Jaa lo - v dQ 4+ [yu div v dQ
Jo ¢div o dQ

Il

$p, 9v-nds, YveHEC(div,Q), (8)
fad f(u) dQ, VéeL*(Q),
where HZC(div ,Q) = {veH(div,Q) | v-n=0 on [y}

For the discretisation we assume that ( can be divided by a regular partitioning in open

disjoint rectangular cells Q;, @ = UQ;. We denote by E; the edges of the rectangles, by ¢; the
characteristic function on {2;, and we use the notation

{ +1 if E; is a N- or E-edge of Q;,

dij = ¢ —1 if E;isaS-or W-edge of Q;, (9)

0 if E; is not an edge of Q;.

By e;eH(div ,Q) we denote the tent function for Ej, i.e. a vector function e; of which each
component is linear on each ; and which satisfies e; - ny = &z, where n; is the unit normal
on edge Ej (in the positive z- or y- direction); §;) is the Kronecker delta. We introduce &, a
function defined on all edges Ej;, by

_ _ 1 if zeF,,
wz) = {0 if ¢y, (10)

and the half tent function e;; defined by e;; = eje;.
We define the discrete spaces

Ln(Q2) = Span(e;),

A{h = Spa'n(‘l)7 (11)
HE%(div ,Q) = Span(e;)NHE(div,Q),

Wn(Q) = Span(e;;).
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The mixed finite element (MFE) discretisation of equation (6) reads:
find 0,€HPC(div ,Q) and u4eL () such that
{ Jaa ton - vy dQ + fn updiv vy d) = f[\D gVh-n, VVhEH,?C(diV ,82), (12)
fn or div o) d2 = fﬂ bn f(u.) aQ, V(ﬁELi(Q)

We notice that f may be a nonlinear function of u, so linearisation yields a discrete linear

system of the form
A B o; b
(o o) (%)=(3) )

where
ar; = Joaler-e; dQ,
b = Jo, div e, dQ = ¥;dijh;,
Cmi = ~bmi fo, 5 40, (14)
b, = fsk ger-n dl =% dy [g, g dT,

o = Jo f(u) do.

Here hj denotes the length of E; and o; and u; are the coefficients in
or =3;0; €, up = U € (15)

(Notice that C' = 0 in classical MFE theory.) In the usual stable case (no avalanche) the sign
of f is such that ¢;; < 0. One of the advantages of the mixed finite element method is that the
second equation in its discrete form guarantees the property of discrete current conservation.

Lumping, Scharfetter-Gummel

Taking piecewise constant approximations for f and g, all entries in the system (13) are
simple to evaluate, except ar;. This coefficient may give rise to problems because in the
continuity equations a(x) can be a rapidly varying exponential function. The quadrature
used to approximate ay; is the weighted trapezoidal rule for rectangles

/nlw(w):(:c) o=z z(z'.,,)/‘:ww(m) 0,

v=1,2,34 B

where z, are the four vertices and QY are the four quarter rectangles, parts of Q;, associated
with these vertices respectively. We use w(z) = a™!, and z(z) = ¥, €;; - eir. The use of this
quadrature rule is called lumping because it makes the matrix A diagonal. This is seen e.g.
in the case of constant a (Poisson equation), where exact quadrature would yield

ls-a"la,- if k=7,
/ a"le;; - ej, dQ = ¢ ga”la; if Ex and Ej are opposite neighbours,
' 0 otherwise,

where a; = area(f);). In the case of the trapezoidal rule we obtain

Lo-la, ifk = j,
/a_IEij'ejkdﬂz{éa @it J

otherwise.

1
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It was shown by Schilders [16] that the trapezoidal rule is advantageous, because the lumped
form of the discretisation still yields an M-matrix. In the non-lumped case it is easily shown
that the matrix obtained after elimination of ¢ is not necessarily an M-matrix in the case
of a non-zero matrix C. Hence stability problems may rise. (In the non-lumped linear one-
dimensional case with constant coefficients, f(u) = f'u with f > 0, the matrix is an M-matrix
only if A%f’/a < 6!) Therefore, in the remainder of this paper we restrict ourselves to the
lumped case only.
By the trapezoidal rule we get the approximation

ajr = Z/n. a”le; ey dO = Z Z (eij-ex)(z,) /;,:, o Y(z) dQ =

i v=1,23,4
- -1 _c. -1
- ;sz‘jwé,kek(zu)/nr o Mz) dQ = 65 /n ' dQ,
where Q% = U{,_,,mvngk#@} Q7; le. Q* is the dual box related with the edge Ei. If we

approximate ¥ in QF by a linear function, interpolating the values ¥; from the neighbouring
cell centers, then a = exp(£%), and we obtain

/n* a”! df) = area(Qy) Bexp ' (Fvi,, F¥i, ),

where we introduced the function

r—y

Bexp(z,y) = (16)

er —e¥
Thus we retain the well-known Scharfetter-Gummel scheme (cf. [3]). In [16] it was shown that
currents may be computed more accurately by the present MFE method than by the classical
box schenie.

We see that, after lumping, the variables o; may be eliminated to obtain a five-point
difference scheme between the variables u;. For the discretisation of (6), we apply the above
scheme for u = (¢, 8,%,), so that o = (Jy,Jn, Jp), and a = (py, ita exp(¥), up exp(—1)), to
obtain the system

EJ h_l‘{tj']wj =P it D(J:;), o
Jyi = =2 py (5 — %),

a;

hd,;,  Bexp (-¢;,~v,)
Jnj = ——l;L/L,,, exp ((—¢n,-“¢‘ng)(¢’n'i - ¢ni)7
C_ _hydy,  Bexp (v,¥:)
Jpj = = P "L”Bexp_a(-‘t#,ép_,)(¢Pi = &)

Ehidijdn; = + B¢, bnys 85.),

It

E hidi oy = = R(¥i, 6nis 6p,)s

(17)
where a; = area({;).
Green boundaries

In the case of partially refined grids, green boundaries appear. Green boundaries are those
boundaries of a fine grid that are not part of the boundary of the domain Q. Such green
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boundaries (green edges) separate areas where finest cells have different mesh sizes. Here
the finer mesh needs an additional boundary condition. Hence, values of the potentials u
are needed at edges Ej, to serve as boundary conditions for discretisation on the fine mesh.
These values are obtained from the coarse grid by the use of half tent functions as weighting
functions in equation (12a), and by forcing sufficient continuity by the introduction of a
Lagrange multiplier, as is usual for the hybrid mixed finite element method [3]. We denote
these test functions by 7. The value of the potential at wall Ey, denoted by Ay, is derived
from the variational equation: find (u}, o}, An)€ La(Q) x Wi(Q) x Mp(Q) such that

Zi fn, a_l‘?';z : TI: +3 fnx u;zdiv T = Zi §an_» AhT;: -y,
Y fo, ondiv o, =i Jo, o flu) dQ, (18)
> fani Mro} e =0,

for all (@n, 77, ttn) € La(2) x Wi(Q) x My(Q). Now the third equation guarantees that the fluxes
in the solution satisfy of€HBC(div ,Q). Hence, in the interior the solution of system (18)
is the same as the solution of (12), and A, can be interpreted as the value of the potentials
at the edges. The values ), are the coefficients in A, = ¥, Ax&, with & the characteristic
function on Ej, and the Ay can be expressed as

f(l—l ko,,‘l w fa‘l ko',‘2
Ja~t dQ, 7 fatdQy ]

/\k = Uy

(19)

where i; and i, denote adjacent cells. This actually comes down to linear interpolation for
the Poisson equation, or exponential interpolation for the continuity equations as was used
for the one-dimensional case in [5].

4 Vanka type relaxation

For the efficiency of the multigrid method the choice of a proper relaxation procedure is of
prime importance. Several procedures are available to solve the system of equations that
arises from the mixed finite element method. Blockwise relaxation with current conservation
has been used by Schmidt and Jacobs [17] for the solution of a Poisson problem with Neu-
mann boundary conditions, Maitre c.s. [L0] give an analysis of Uzawa relaxation. Vanka [19]
describes a block-implicit method applied to the incompressible Navier-Stokes equations. In
that study the equations associated with the pressure in a cell and the velocities over the cell
faces are solved in a coupled manner.

In the present study we use a method similar to the procedure used by Vanka. In our
relaxation all cells on a given level are scanned in a predetermined order, either lexicograph-
ically or in a red-black ordering. When a cell is visited the variables related with that cell
and the fluxes over its four edges are relaxed simultaneously. In this way 5 variables are
relaxed for each equation in (6), and in the relaxation of a single cell 15 equations are solved
simultaneously.

This system of equations for (¥i, dn;, &p;) and (Jyks Jok, Jpk), k = N,E, 5, W, has the
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following form

al) Tudixhedye = (e%77% — ¥7%n) + D(z),

a2 Juyk = ‘i%‘i/‘;b('d’k - ¢i)7
b1) Tk dikhiduk = +R(P:, Gnis $5,)s

o~~~ o~ —

cl) Tidishutok = = R(¥i; $nis $0:)s B
 duahy _ €XP (i) R
(c2 Jpk = == 10y, ¢Pi)ga}_)})—m¢—,-)

Due to the structure of the equations, the computational work in each cell is limited. We
can exploit the linear appearance of J in the equations, and, as was the case in [19], the
linearised form of the equations can be arranged in a block structure

)
)
) Jum - (G, - b kit (20)
)
)

by 0 0 0 +hy oN Sy +unhn

0 bg O 0 +hg oE Sg +ughg

0 0 bs 0 ~hg os | = Ss — ushs , (21)
0 0 0 bw —hw ow Sw — uwhw

hy hg —hs —hw —hyhwfi(z:) u; S; + hnhw f(z:)

where by, = area(Q)/u, k = N, E, S, W, for the Poisson equation,

or by, = area({; ) Be..p(F¢, Fi) for the continuity equations. S, denotes a possible source
term and uy the potential in the neighbouring cells. The upper 4 x 4 block in this system is
inverted analytically, which comes down to the local elimination of the fluxes.

Because the equations associated with the edges of a cell are satisfied as soon as that cell
has been relaxed, it is a property of our 5-point Vanka relaxation that all equations related
to the fluxes (i.e. eq. (17,a2,b2,c2)) are satisfied as soon as a complete relaxation sweep has
been performed. (Notice that an over or under relaxation would spoil this property.) The
residuals left are associated with the cells and describe the extent to which the conservation
property is not satisfied.

Newton vs Gummel

What remains in the relaxation of a cell is the solution of the nonlinear part of the equations.
For this we resort to two approaches (1) Newton’s iteration, and (2) Gummel’s iteration.
(Notice that we apply these methods locally, in contrast with the usual approaches where
these methods are used for all points in the grid simultaneously.) The advantage of Newton’s
method is its quadratic convergence in the neighbourhood of the solution. This well known
phenomenon makes Newton’s method efficient when good initial approximations are available.
For practical problems it appeared that relaxation based on Newton’s iteration took about
60% of the computing time needed by Gummel’s iteration. (This figure depends on a number
of factors, but it gives some qualitative impression.) For our equations, the problem with
Newton’s method is the strong nonlinearity in the potential variables and a possible lack of
good initial approximations. Much of the nonlinearity is characterised by the fact that the
variables ¥, ¢, and ¢,, appear as exponents in exponential functions.
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Correction transformations and initial estimates

Because the equations are better linearised with respect to the variables n and p than to
¢ and @, (see Section 1) Schilders’ correction transformation [15] is used, both in the case
of Newton’s and Gummel’s method. This means that first the linearisation is made with
respect to the potentials and the corresponding correction is computed. Then this correction
is transformed to the correction that would have been obtained if a linearisation with respect

to n or p were made. From equation (4) it follows that the corrections, expressed in the
quasi-Fermi potentials, are related by

AL = Ay —log(1 - (Agr —AyeM)), (22)
AG™ = Ay +log(1 + (Ago — Ap©)). (23)

Such a transformation, introduced in [15] for the continuity equations, can also be used
for the nonlinear Poisson equation. There we have to determine what part of the equation
is dominating, the linear part or the nonlinear (exponential) part. We took the following
strategy. Without loss of generality the Poisson equation (20 a) can be written as

asinh® + b = 1. (24)
If |b] > |acoshi| we decide that the linear part is dominating and we apply the correction
Y = o 4 A
if |b] < |a cosh | the nonlinear part is dominating and we take
™" = arsinh(sinh % + At cosh %14 ).

If we need an initial estimate for Gummel’s method, we can also start from equation (24).
Depending on the size of ¥, we can find two approximations for the solution: % = 1/(a + b),
or 3 = arsinh(1/a). In order to decide which one is the more appropriate, we select the one
for which the functional

G($) = acosh § + %W )

is minimal.

The convergence of pointwise Gummel iteration

Newton's method is used in the later stages of the local solution process, when good initial
estimates are already available; in the absence of good initial estimates we use (locally)
Gummel’s iteration because it is more robust.

Little is known about the convergence of the pointwise Gummel iteration. Therefore we
present here an analysis of the convergence of Gummel’s decoupling method for the solution
of the system (20). The objective is to obtain a more precise understanding of the convergence
properties of this iterative scheme. The analysis presented predicts that the convergence of
Gummel’s method depends only on the difference in the values of ¥ in the neighbouring
control volimes, and not on the initial estimate or on the properties of the doping profile

D(z).
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In the spirit of [8] we study the Gummel iteration as a fixed-point mapping T : IR? — IR?,
that maps a pair (@,,¢,) onto a pair (45,,,q~5p) = T(¢n, ¢p). To compute T(¢,, ¢,), first the
electric potential ¢¥(@,,¢,) is computed as an intermediate result by the solution of (20 a).
The values ¢, and q-ﬁp are obtained from this ¥(¢,, $,) by the solution of (20 b,c). Existence
of a solution in 4 C IR? follows when T is a contraction mapping on A. Then Gummel’s
iteration converges and the contraction factor may give an indication of the convergence speed
of the iteration. To measure the distance in IR? we use the max-norm:

(9n:8p) = (87 8l = max(|¢7, — 871,19, — 41). (25)

In order to be able to be more specific, we restrict the analysis to the zero recombination
case. This enables us to find explicit expressions for the iterates.

Theorem 1 If the variation in the P-values in the four neighbouring points is sufficiently
small (max, ¥, — ming ¥ < 12), then the operator T for the pointwise Gummel iteration is a
contraction, i.e.

IT(¢nr¢5) ~ T(85, 8)| < Cll(@}: 85) — (87,601, (26)
with C = l—lz(max;c ¥ — ming ¥y ) and for all ( i,qB:,)ERz, i=1,2.

Proof: The proof is given in two parts. We consider the iteration sequence

(6 ) = ¥ = (S ), i=1,2, (27)
so that ¥ = ¥(g}, 4}) and (¢, 8) = T4, ¢). In the first part we prove
[ = 91 < 11(8r, 43) — (65, 62)l, (28)
and in the second part we show
(85, 85) — (82, 82)| < Clep? =97, (29)

In fact we show (29) only for ¢,,
|8} — ¢2| < Clpt — 97|, (30)

because a similar result for ¢, follows by analogy, and both results together yield (29).
In order to prove equation (28) we consider (20a), which yields for i = 1,2,

S syt =) + (57— ¥ ) + D(z) =0,
k
with wy = h}/area((,). By subtraction we obtain
Do wipylthy =) + (7Y =TI B 0 2 g
k

or

(Y1 = o)y Swp = (¥ 8 (ePh=90-( =¥) _ 1y 4 (B9 ((Hm))-(v1=07) _ 1Y) (31)
k
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From this equality, the inequality (28) follows for the following reason.

Assume that (28) is not true, then we consider two cases: either ' —? > 0 or $*—¢? < 0.
In the former case from the negation of (28) follows that %' — %? > ¢} — #? and ¥* — % >
¢y — 3. It follows that the left-hand side of the equality (31) is positive and the right-hand side
is negative. This is a contradiction. Similarly, if ¢! — 4% < 0 it follows that ' —9* < ¢} — 2
and P! —¢? < @ — #2. Now it follows that the left-hand side of the equality (31) is negative
and the right-hand side is positive. This also yields a contradiction. Because (28) is trivially
satisfied for ¢! = ¥?, we may conclude that (28) holds.

In order to prove the second part (30), we consider (20c). With zero recombination this
yields for ¢ = 1,2, (dropping the subscript p)

R Bexp ("&kalpi) _
Zk: luk(¢k ¢ ) Bexp (¢ka ¢1) = Oa

using the definition of Bexp for the denominators, we obtain
e” > wiBexp (Yx,¥’) = Y wi €®* Bexp (v, ¥°). (32)
& k
First we notice that all factors and terms in this expression are positive, and hence min e <
e¥ < maxp e®*, for i = 1,2, which yields (without any restriction on %)
mkin e < ¢ < m}?.xd)k, for i = 1,2,

and
-9’ < |m,§xm - min Pxl-

Further, from (32) we derive

oo TawBexp ($o9?) TiwiBexp (Ya,¥l)e?
© T T, wiBexp (¢, 0') Sy wkBexp (Vi $7)e?

Now we define ¥4 to be the value of ¢y for which

BexP (d’Av“pz) > BexP (’ll)k,‘ll)z)

(33)
Bexp (%bml/'l) N BCKP (d’k’ l»bl)
for all k, and similarly ¥5 such that
Bexp (¥5,%")  Bexp (41, %))
Bexp (¢¥5,%?) ~ Bexp (¢x,¥?)
for all k, then , .
S8 < Bexp (¥4,%?) Bexp (Y5, ¥') (34)

= Bexp (¥4,9") Bexp (¢5,%?)

Taking the logarithm and introducing the function g(z) = log (;,fj), we may write (34) as

¢ — 87 < g(u? —da) — g(¥' —%a) — 9(¥* — ¥B) + 9(¥" — ¥)
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or
—¢* < / / g"(z +y)) dz dy .

Since

II( ) — 1
gz = 2cosh(z) — 2
we know that 0 < —g"(z) < 1/12 and

x
Sl =

' - < T2—(¢B —a)(Pt = P?).

To determine ¥4 and ¥p we consider

<BeXP (¥, ¢s)

P2
Bexp (¥ '¢'1)) N ‘/‘;’1 9'(z =¥}z = (2 = $1)g'(¥m — ¥)

for some Pme(¥?,4?). Because g'(,» — ) is a monotonically increasing function of ¥ we
find ¥4 = max ¥ and ¥p = min ¥ if ¥, > ¥y, and if ¥, < ¥, we have ¥4 = ming ¥4 and
g = max; V. It follows that

¢t — ¢’ < —-(max i — min et =2

Because the superscripts 1 and 2 may be interchanged without changing the meaning of the
right-hand side, this proves (30) and hence the theorem. O

The proof of the theorem, valid for zero recombination and zero source term, clearly shows
that convergence may be slower if a source term for the continuity equations takes values that
make the right-hand side of (32) smaller. No solution exists for the local nonlinear problem,
if the source term makes the right-hand side of (32) negative. This means that large source
terms can cause the non-existence of a solution. Hence, we have to face the possibility that
the correction equations in the multigrid process have no solution if the right-hand side of the
equation gets too large.

5 The coarse grid correction

If, for the solution of the nonlinear discrete equation,

Ni(gn) = f, (35)

we consider the usual nonlinear coarse grid correction stage of a two-grid process,
Non(gzn) = Non(gzn) + 1 Ronn(fo — Na(g2)), (36)
G =@ + Puon(Gon — qan)/n, (37)

we recognise five important components that influence the effect of this stage. In the first
place, there are the three operators Ny, sz;,_h and Py, and further the starting approx-
imation on the coarser grid, gx, and the parameter u€IR. For a nonlinear problem, the
operator Ny, is often constructed by the same method as is used for Ni; in our case it is
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described in Section 3. In principle, the choice for the operators Ran s and Py is free (as
long as they are accurate enough), but in the context of our MFE discretisation there exist
a natural prolongation and restriction associated with the discretisation, viz. those induced
by the relations L2,(Q) C LE(Q), and HEE(div ,Q) C HPC(div ,Q). These relations imply
that the prolongation corresponds for the potentials with piecewise constant interpolation,
and for both components of the fluxes with piecewise linear interpolation in one direction
and piecewise constant interpolation in the other. The corresponding prolongation stencils
1/2 1/2 .
are [ i i } , for the potentials (associated with a cell), and 1 1 ,[ };; i ig ] )
1/2 1/2
for the fluxes (associated with a horizontal and a vertical edge respectively). The natural
restriction Rapn is the transpose of the natural prolongation Pj s, because the spaces of test
and trial functions in (12) are the same.

For strong nonlinear problems, also the choice of the starting approximation ¢, and the
parameter u are of importance because they determine to a very large extent the coarse grid
problem that is solved. If the distance between g§'¢ and the solution of (35) is small, it is
clear that mainly g,n determines the coarse grid problem, and it is wise to select gop in such
a way that the problem (36) is well conditioned. If (36) is not ill-conditioned, the parameter
# can be used to keep ¢ap in a sufficiently small neighbourhood of gy,. This may guarantee
the existence of a solution of the correction equation. However, the effect of a small p can
be that only a very small neighbourhood of ¢, is considered, so that nonlinear effects in N,y
are neglected. Moreover, the factor 1/x in (37) can amplify the errors made in the solution
of (36).

For the semiconductor equations (6) without a row scaling, the residual for the continuity
equations correspond with the rate-of-change in the carrier concentrations, cf. eq. (1). In this
unscaled form, the natural restriction operator has a "physical meaning”: the sum of the
rate-of-change in four small sub-cells corresponds with the total rate-of-change in the father
cell. We believe that this is an advantageous property of the equations in their unscaled
form. However, without row-scaling, the size of the residuals (as well as the size of the
diagonal elements of the Jacobian matrix) may vary largely in magnitude. This introduces
the difficulty that for some parts of the domain  the large residual requires a very small
/t, whereas a larger i would be allowed in other parts. An even more awkward situation is
encountered if the values for a proper row-scaling differ strongly for the equations related
with a coarse grid cell and the corresponding equations on the finer level. In this case a large
residual on the fine grid may yield an improper large correction on the coarse grid. This effect
is seen in regions where the character of the solution changes rapidly (transition between N-
and P-region, depletion layer). The same effect was observed by de Zeeuw in [4] in the 1D-case
and it leads to the introduction of a residual damping operator D,. This D, is a diagonal
operator, depending on the current coarse and fine grid solution, which has entries in [0, 1].
Hence, for the coarse grid correction we use

Naw(G:n) = Now(gon) + Daonl(qan, 3 ) Bonn(fo — Na(gn® ), (38)

new

" = ¢ + Pron(dan — qon) .- (39)

This means that the coarse grid correction (38), (39) is not able to reduce all components
of the residual that can be represented on the coarse grid, but an amount (I2, — Do) Ronn(fr—
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Ni(g)) remains unaffected (in a single CGC sweep). The elements of D35 are different from
1 only in small regions (the transition regions in the semiconductor), and the effect of the
damping is compensated in these regions by additional relaxation on the fine grid. The precise
construction of the operator Day is found in [14].

The selection of a proper coarse grid approximation

For the selection of ga, in (36) or (38) two approaches are in common use. Either ¢, =
Ronngf! is used, where Rapp is a restriction operator for the solution, or for gz one takes
simply the last approximation that is available in the full multigrid process, i.e. one starts
with the approximate solution on the coarse grid as obtained in the nested iteration, and later
-at each stage of the multigrid process- the last approximate solution on a given level is used
as an initial approximation in the next stage.

In practice, it appears that the latter technique performs rather well. However, we con-
sider it unreliable because in all later stages of the process the approximate solutions on the
coarser levels depend on the complete history of the computational process, and there is no
mechanism that forces such a coarse grid approximation to stay in the neighbourhood of a
solution. In fact, such an approximation ¢, may loose properties that are required for a
proper approximate solution, e.g. symmetry.

The first approach, however, requires the selection of an R, and for our problem there
is no reason to assume that e.g. the simple use of L?-projection of the Slotboom variables -as
suggested by the discretisation- will yield a proper problem (38). It seems a better choice to
take mean values for ¢ and to construct ¢, and ¢, such that the total amount of electrons
and holes in a coarse cell equals the sum of the amounts in the corresponding smaller cells.

A third, more simple technique was adopted because of its good results: compute a rea-
sonably accurate discrete approximation on the coarse grid during the nested iteration, and
keep this value as ¢z, during all the later stages of the computation.

In our case this last technique can be understood as a favourable approach for the follow-
ing reason. For the homogeneous continuity equations (20b,c) with R = 0, the Scharfetter-
Gummel discretisation has the property that the row-sum of the discrete matrix (8J,/0¢;)
at cell i is equal to the residual of the discrete equation for that cell: 3, ﬁ;(Zk hidieJor) =

Sk hedin o, and, analogously, for the other continuity equation ¥, 5&(2;: hidiJne) =

— Y hedi Jok.  This follows from, (cf. equation (20 b2,c2) ), Juu = ggﬁ + & g =

9¢p;?
géﬁ + g——i"{‘. Hence the row-sums in the Jacobian matrix vanish when g5 is in the neigh-

bourhood of the discrete solution. This implies that in the neighbourhood of the discrete
solution the linearised operators in the Gummel process are M-matrices. A positive recombi-
nation only improves the situation. This shows that the stability of the linearised operators
is better in the neighbourhood of a solution than at some distance from the solution.

Other transfer operators

A priori there is also no reason to assume that the natural grid transfer operators P, ax and
Ran . are the best, or even that they are sufficiently accurate (smooth) in order not to disturb
reduction of the the high frequency components in the solution.
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Indeed, for the one-dimensional case, in combination with the Vanka relaxation we observe
by Fourier analysis that these simple transfer operators are too inaccurate. The non-damped
5-point Vanka relaxation can be considered as eliminating the fluxes and applying a collective
Gauss-Seidel procedure to the remaining potentials. After elimination of the fluxes, the
differential equations for the potentials are second order, and hence the rule applies that the
sum of the HF orders of the prolongation and restriction should at least be two [7]. The orders
of the natural prolongation and restriction, however, are one. To obtain a proper convergence
of the MG algorithm, one should take more accurate transfer operators. This is analyzed in
detail by two-grid Fourier analysis in [13]. The simplest operator that satisfies a sufficient
accuracy condition is piecewise linear interpolation and its adjoint as a weighted restriction.
The LF and HF order of this restriction is 2.

However, the same effect is not seen in 2D [13]. The Vanka relaxation damps sufficiently
the HF modes that are allowed by the transfer operators, and in practical 2D computations
piecewise constant interpolation, together with its transpose for a restriction, gave satisfactory
results. We did not observe an improvement when more accurate restrictions were used instead
of the natural restriction.

Because of the asymmetric character of the convection operator, and in view of the suc-
cessful use of an asymmetric prolongation in a multigrid method for the one-dimensional
semiconductor problem in [4] [5] [6], it is interesting to consider the possibility of an asym-
metric prolongation for the two-dimensional problem as well. In 1D such an interpolation was
based on the form (cf. eq. (6 b,c))

®(z) - 8(a) = / T e I g, (40)
with the assumption of a piecewise constant J and a piecewise linear ¥ over the area of in-
tegration (the dual boxes). In our MFE context, the same exponential interpolation formula
is found in Section 3 as equation (19). The principle behind the construction of that prolon-
gation in the one-dimensional case is the equal flux over corresponding coarse and fine grid
edges. In two dimensions, however, such an explicit prolongation cannot be constructed. This
is because in two dimensions the assumption of a piecewise constant J and the existence of
a unique function ® leads to an inconsistency. Independence of ®(z) on the integration path
means grad & = exp(+)J. This relation only holds for ¢ and J satisfying

0 = rot grad ® = rot (e¥*J) = e¥¥(rot J £ J x grad 7). (41)

With the assumption of a constant J, this implies that J should be parallel with grad v.
However, for a two-dimensional case, this is generally too restrictive a condition. From equa-
tion (41) follows that J has the general form J = grad u F ugrad v, for an arbitrary scalar
function u.

Assuming that the dependence of the integration path has only a minor influence, we might
overlook the non-uniqueness of ® and select an path, e.g. select the shortest line segment from
the coarse cell center (with the known potential) to the fine cell center (where the potential
has to be computed). Then the fluxes over corresponding edges in the coarse and the fine
mesh are not equal, and in our experiments this interpolation appears no better than the
piecewise constant interpolation.
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6 Example

As a test problem we used a bipolar NPN transistor from the CURRY example set [9]. The
geometry of the transistor is shown in Figure 1. There is an N-type emitter region, a P-type
base region and an N-type collector region. The length of the device is 20 micron and the
width is 8. For the precise description of the doping profile we refer to [9]. The Shockley-Read-
Hall model 3 is used for the recombination, with carrier lifetimes 7, = 7, = 107, Dirichlet
boundary conditions are given at the contacts. On the remaining boundaries homogeneous
Neumann boundary conditions apply.

emifter _base
n=6019 ) 915,18
n= 1.11019
collector

Figure 1: Geometry of the bipolar transistor

The voltages applied to the collector and base are kept constant at V.o = 1.0V and
Viase = 0.0V. The simulation is started with zero potential at the emitter. Then no currents
are present because all P-N junctions are blocked. The simulation is continued, first by an
increase of the emitter voltage to -0.5V and then in steps (-0.05V) to -0.8 Volts. Then currents
are clearly present. In Table 1 we show the collector currents computed on a 16 x 40 , 32 x
80 and 64 x 160 mesh, together with a reference solution computed with the CURRY package
on a non-uniform 56 x 62 grid. We see that the solution (i.c. the collector current) appears
to converge for vanishing mesh-widths.

MFEM CURRY
uniform mesh non-uniform

Viomit | 16 x 40 32 x 80 64 x 160 56 x 62
0.0 |5.3(-12) 5.1(-11) 5.2(-11) 7.2(-11)
-0.50 | 9.5(-5)  1.4(-5) 1.0(-5) 9.8(-6)
-0.55 | 5.8(-4)  9.5(-5) 7.0(-5) 6.7(-5)
-0.60 | 3.4(-3)  6.4(-4)  4.8(-4) 4.6(-4)
-0.65 | 1.8(-2)  4.3(-3)  3.3(-3) 3.1(-3)
-0.70 | 8.4(-2)  2.8(-2) 2.2(-2) 2.1(-2)
075 3.2(-1)  L7(-1)  1.4(-1) 1.3(-1)
-0.80 | 1.1(0) 7.9(-1)  7.1(-1) 6.9(-1)

Table 1: Collector currents (A/cm).

For the coarsest mesh, the device is divided into 4 x 10 (!) squares. We notice that this
mesh is so coarse that the emitter boundary does not fit the edges of the cells. Therefore, for
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the discretisation, an obvious generalisation of the method described in Section 3 was used.
In the discretisation, for each cell the current through such a boundary edge is determined
by the boundary potential, the potential in that cell and the proportion of the edge that is
covered by the contact. This treatment of the boundary prevents the obligation to use fine
or irregular cells in the coarsest grids.

The initial estimates for the emitter voltages -0.5(-0.05)-0.8 were obtained from the so-
lutions computed with the previous voltage. First the solution on the coarsest grid was
accurately computed, and the solution on the finer grids was computed (approximately, by a
few W-cycles) before an interpolation to the next finer grid was made. In the interpolation to
the finer grid, the low frequencies in the solution were taken from the coarser grid, whereas
the high frequency components were taken from the fine grid solution for the lower voltage.
Thus mimicking a well known technique used for time dependent problems.

The MGM used, Convergence results

The multigrid method to solve the transistor problem applies the lumped MFE discretisation
as described in Section 3. The natural prolongation and restriction operators were used,
together with the residual damping as explained in Section 5. A single additional point-
Vanka relaxation sweep was made over all fine grid cells for which the residual was damped in
the coarse grid correction. As the initial estimate g;;, we kept the solution obtained initially
on the coarse grid. Both in the pre- and in the post-relaxation stage a single sweep of the
smoothing procedure was used.

Beside the symmetric lexicographic point-Vanka relaxation, also a (non-symmetric, but
horizontal+vertical) line-Vanka relaxation was applied as smoothing procedure. In the results
shown, only W-cycle results are given. As was shown earlier 6] [14] V-cycles are less robust
for the semiconductor problem.

In Figure 2 convergence histories are shown for the multigrid solution process. On the
horizontal axis the number of cycles is given, and on the vertical axis the scaled residual. The
residual scaling was made pointwise, by means of the diagonal 3x3 blocks of the Jacobian
matrix. Thus the residual corresponds with corrections that would occur if a pointwise collec-
tive Jacobi relaxation was used. Hence, the scaled residual can be associated with corrections
for (1, ¢n, ¢p). For the resulting scaled residual the maximum was taken over the grid and
over the three variables (¢, ¢, ¢p).

Convergence results are shown for the solution with 3, 4 and 5 grid levels, both for point-
Vanka and for line-Vanka relaxation. It is observed that line-Vanka relaxation is the more
efficient. It is seen that the convergence is not always stabilised to a constant factor after 10
iterations, but an almost grid independent convergence rate can be expected. In any case,
convergence is fast and a limited number of iterations is sufficient to attain truncation error
accuracy.
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Figure 2: Convergence of the MG method (W-cycle).
The 10-log of the scaled residual against the iteration number.
Solid line: 16 x 40 mesh; dotted line: 32 x 80 mesh; dashed line: 64 x 160 mesh.
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